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Background: Bringing Bayesian Astrostatistics back to Earth

Astrophysicists interested in:
▶ Quantify uncertainty
▶ Fusion of diverse measurements
▶ Biggest data

Typically use Bayesian methods:
▶ Incorporation of prior info
▶ Quantifies updating knowledge
▶ Bayes theorem: unifying framework

P(H|D) = P(D|H)P(H)
P(D)

H : Hypothesis
D : Data

Complementary to machine learning
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Background: Challenges in the Electromagnetic Environment (CEME)
Since 2020 participated in 6 Maths of CEME workshops, with 5 DSTL-funded projects

1. Optimising a search route to discover
networks in a landscape of constraints

(CEME1.2, [Jan20])

2. Optimisation of sensor location
(CEME2.3 [Sep20])

3. Further optimisation of sensor location
(CEME4 [Sep21])

4. MIDAS: Maximum information data
acquisition strategies (CEME6.4) [Jan23])

5. Optimal dynamic manoeuvring & adaptation
of communications networks driven by the
MIDAS information-advantage mathematical
framework (DASA GAN [Oct23])

Illicit transmitter

Limited 
access

Limited 
access

Limited 
access

DSTL: Olly Gage, Emily Russell, Ben Jackson, Ben Gear,
Emma Bowley
PA: James Matthews, Richard Claridge, Emily
Morrison, Rob Lambert
PC Ltd: Catherine Watkinson, Thomas Mcaloone,
Parul Janagal, Adam Ormondroyd
UCAM/QML: Mike Hobson, Justin Ward, Oscar
Bandtlow

will.handley@polychord.co.uk 3 / 10



Background: PolyChord Ltd & Nested Sampling

Nested sampling
▶ Framework of numerical algorithms for

performing Bayesian analysis
▶ Performs three tasks:

1. Optimisation maxx f(x)
2. Exploration x ∼ f
3. Integration

∫
f(x)dx

on a-priori unknown-functions
▶ Key algorithm called polychord
▶ Developed in my Cambridge cosmology lab

PolyChord Ltd
▶ Data Science SME spun out of Astro group
▶ Applies nested sampling & Bayesian machine

learning to industry problems
▶ Working with PA/DSTL for three years
▶ Protein folding, Nuclear fusion, Battery

optimisation, predictive maintenance.
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Example 1: Mesh networks (CEME1.2)

Toy example (conducted in CEME1 workshop):
▶ Number of nodes N = 3

▶ Fully connected (unknown) network in black
▶ Path traced out by detector indicated by line

of circles
▶ white circles indicate ``non detection''
▶ black circles indicate ``detection'' (with

direction by blue arcs)

▶ Contours are marginal posterior probability
distributions for the locations x1, x2, x3, of
the leftmost (green), middle (orange) and
rightmost (blue) nodes respectively.
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Example 1: Mesh networks (CEME1.2)

▶ Extend example so
that N can also vary.

▶ Marginal posterior
on P(N|D) (bottom
right).

▶ Instead of plotting
posterior contours,
we plot samples
from the full
posterior
distribution.

▶ Least compressed
representation of the
posterior.

N=2 N=3 N=4

N=5 N=6

2 3 4 5 6

KL = 0.0 bits
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Example 2: Optimising sensor networks (CEME2.3 & CEME4)

▶ TDOA sensors: blue, orange & green dots
▶ Transmitter: red cross
▶ Contours: posterior distributions

▶ pairwise posteriors excluding one sensor in blue,
orange & green (faint parabolic arcs)

▶ combined posterior in red (solid peak)

▶ Where to put sensors?
▶ Compute the localisation (information gain DKL),

distributed over all uncertainties:
▶ transmitter location,
▶ buildings
▶ reflections

▶ Find collection of good good solutions
▶ ⇒ nonlinear, nonconvex, ensemble optimisation.
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Example 3: MIDAS (CEME6.4)

▶ MIDAS: Maximum information data acquisition
strategies

▶ Generalise ``best sensor location'' to ``best
data acquisition strategy''

▶ Use this to decide what data to take next.
▶ Add in adversarialism (two competing teams)
▶ Networks of communicating allied sensors
▶ Adversarial capacity (jamming)
▶ Ability re-roll (e.g. UAV) capability
▶ Use same approach to decide when & how to

re-roll.
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MIDAS & the Mathematical OODA loop (DASA GAN)

Act
Execute strategy Ŝ

Observe
Collect data D

Orient
Update posterior

knowledge P(θ|D)

Decide
Optimise strategy S
using information

D̂KL(S|P).

▶ Mathematical instantiation of John
Boyd's OODA loop.

▶ Tight coupling between Bayesian
statistics (updating knowledge) and
Information theory (how/when to
gather more)

▶ Nested sampling (PolyChord) is used
at both Orient and Decide steps, in
Bayesian & Optimisation mode.

▶ However, given that all of these will only
ever be Models of the real world, the Act
step will need to be human-in-the-loop.
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So what?
Current research & future directions

▶ DSTL+PC/UCAM+PA have shown that Bayesian methods capture natural data fusion at scale.
▶ We know the complex future EME is going to be too complex for unaugmented humans.
▶ The missing piece is the Act step.
▶ For human-in-the-loop decision-making the rest of the loop needs to present and compress

the information in a way that is actionable and explainable.
▶ This is the frontier of our current research

▶ Designing optimal theoretical system that assists in the decision cycle
▶ Giving human agents what they need, when you need it
▶ Should get out of the way given human insight
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Summary

▶ Astrostatisticians continue to innovate at the frontier of inference.
▶ These techniques currently require laptop- to high-performance computing power.
▶ For generation-after-next techniques, we can assume they will be in our pocket/clothing.
▶ The Bayesian OODA loop quantifies optimal human-in-the-loop decision-making.
▶ Science & Technology explored here is not challenge-specific.
▶ These techniques are complementary to machine learning/AI
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